Maths Learning Service: Revision Mathematics IA
 Differentiation
 Mathematics IMA

The derivative

Consider a function $y=f(x)$. For some point x, we can find

- the slope of the tangent to the curve described by $f(x)$, or
- the instantaneous rate at which y is changing
by the following method: Find the slope of the line segment joining $(x, f(x))$ and a nearby point $(x+h, f(x+h))$ as shown below:

So,

$$
\frac{\text { "rise" }}{\text { "ru"" }}=\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{x+h-x}
$$

and, in the limit as $h \rightarrow 0$,

$$
\text { slope of tangent to } f(x) \text { at } x=\lim _{h \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Finding derivatives this way is tedious but a number of shortcut rules are available. In fact we can use these rules to find the function that gives the slope of the tangent to $f(x)$ at any point x. This derivative function is given the name $\frac{d y}{d x}$ or $f^{\prime}(x)$.

$$
\frac{d y}{d x} \quad \text { or } \quad f^{\prime}(x) .
$$

$f(x)$	$f^{\prime}(x)$
k (a constant)	0
x^{n}	$n x^{n-1}$, for all n
e^{x}	e^{x}
$\ln x$	$\frac{1}{x}$
$k f(x)$	$k f^{\prime}(x)$
$f(x)+g(x)$	$f^{\prime}(x)+g^{\prime}(x)$
$f(x) g(x)$	$f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
$\frac{f(x)}{g(x)}$	$\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$

A constant doesn't change!

$$
\text { Eg. } f(x)=x^{-3} \text { so } f^{\prime}(x)=-3 x^{-4}
$$

Eg. $y=2 x^{2}$ so $\frac{d y}{d x}=2 \times 2 x^{1}=4 x$ Eg. $f(x)=x^{3}+\ln x$ so $f^{\prime}(x)=3 x^{2}+\frac{1}{x}$

Product Rule

Quotient Rule

Example: Differentiate $f(x)=2 x+3$.
Solution: $f^{\prime}(x)=2 \times 1 x^{1-1}+0=2 x^{0}=2$. (This should not be a surprise since $f(x)$ is clearly a straight line with slope 2 . The solution $f^{\prime}(x)=2$ indicates that the tangent has slope 2 for any value of x, as required.)

Example: Differentiate $f(x)=4 x^{3} \ln x$.
Solution: This is a product of x^{3} and $\ln x$ with a constant multiple of 4. So

$$
\begin{aligned}
f^{\prime}(x) & =4\left(3 x^{2} \times \ln x+x^{3} \times \frac{1}{x}\right) \\
& =12 x^{2} \ln x+4 x^{2} .
\end{aligned}
$$

Example: Differentiate $y=\frac{x+4}{2 x+5}$.
Solution: This is a quotient of $x+4$ and $2 x+5$ so

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1 \times(2 x+5)-(x+4) \times 2}{(2 x+5)^{2}} \\
& =-\frac{3}{(2 x+5)^{2}}
\end{aligned}
$$

Exercises

(1) For $f(x)=x^{2}$ show that $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=2 x$.
(2) Differentiate $y=x^{2}(2 x-1)$ with respect to x by
(a) expanding the RHS first, and
(b) the product rule.
(3) Differentiate the following functions with respect to x :
(a) $y=x^{4}+x^{-4}+4$
(b) $\quad f(x)=\frac{1}{x}$
(c) $y=6 x^{-\frac{2}{3}}$
(d) $f(x)=4 x^{3} e^{x}$
(e) $\sqrt{x}(3 x-1) \quad\left[\right.$ recall that $\left.\sqrt{x}=x^{\frac{1}{2}}\right]$
(f) $y=e^{x}+\left(x^{4}+1\right) \ln x+5$
(g) $\quad f(x)=x^{5}\left(x^{2}+6\right)\left(x+e^{x}\right)$
(h) $y=a x^{2}+b x+c$ where a, b and c are constants
(i) $\quad f(x)=a^{3}+a^{2} b+a b^{2}+b^{3}$ where a and b are constants
(j) $y=\frac{1+3 x}{2-x}$
(k) $\quad f(x)=\frac{x^{2}-3 x+1}{x+2}$
(l) $y=\frac{(x+1) e^{x}}{x}$
(m) $\quad f(x)=\frac{\sqrt{x}}{5 x+2}$
(n) $y=\frac{1}{6 x^{2}+7}$

The Chain Rule

This is the most useful rule of the lot and is based on the following idea:

$$
\frac{d y}{d x}=\frac{d y}{\boldsymbol{d} \boldsymbol{u}} \times \frac{\boldsymbol{d u}}{d x}
$$

where u is a function of x that suits you.

Example: $y=e^{3 x}$ can't be differentiated by the current rules but it could be done if $u(x)=3 x$ and we apply the chain rule.

$$
y=e^{u} \quad \text { so } \quad \frac{d y}{d u}=e^{u} \quad \text { and } \quad \frac{d u}{d x}=3
$$

Hence

$$
\frac{d y}{d x}=e^{u} \times 3=3 e^{3 x}
$$

Example: Consider $y=(2 x+1)^{3}$. If we expand the brackets we get

$$
y=\left(4 x^{2}+4 x+1\right)(2 x+1)=8 x^{3}+12 x^{2}+6 x+1
$$

and hence

$$
\frac{d y}{d x}=24 x^{2}+24 x+6=6\left(4 x^{2}+4 x+1\right)=6(2 x+1)^{2}
$$

The chain rule is more efficient (especially in cases where the power is higher than 3) if we let $u(x)=2 x+1$.

$$
y=u^{3} \quad \text { so } \quad \frac{d y}{d u}=3 u^{2} \quad \text { and } \quad \frac{d u}{d x}=2 .
$$

Hence

$$
\frac{d y}{d x}=3 u^{2} \times 2=6(2 x+1)^{2} \text { as before. }
$$

Exercises

(4) Differentiate $y=(4 x-5)^{2}$ with respect to x by
(a) expanding the RHS first, and
(b) the chain rule.
(5) Repeat question (3)(n) by noting that $\frac{1}{6 x^{2}+7}=\left(6 x^{2}+7\right)^{-1}$ and using the chain rule.
(6) Differentiate the following functions with respect to x.
(a) $y=e^{4 x^{2}}$
(b) $f(x)=\ln (1-x)$
(c) $y=\sqrt{2 x+1}$
(d) $f(x)=\sqrt[3]{x^{3}-x^{2}}$
(e) $y=e^{\left(x^{3}+6\right)^{4}}$
(f) $y=(2 x+1)^{10}$
(g) $\quad f(x)=(x+a)^{b}$ where a and b are constants
(h) $y=\ln \left(e^{x}\right)$

Answers to Exercises

(2) $6 x^{2}-2 x$
(a) $4 x^{3}-4 x^{-5}$
(b) $-\frac{1}{x^{2}}$
(c) $-4 x^{-\frac{5}{3}}$
(d) $12 x^{2} e^{x}+4 x^{3} e^{x}$
(e) $\frac{3 x-1}{2 \sqrt{x}}+3 \sqrt{x}$
(f) $e^{x}+4 x^{3} \ln x+\frac{x^{4}+1}{x}$
(g) $\left(7 x^{6}+30 x^{4}\right)\left(x+e^{x}\right)+\left(x^{7}+6 x^{5}\right)\left(1+e^{x}\right)$
(h) $2 a x+b$
(i) 0
(j) $\frac{7}{(2-x)^{2}}$
(k) $\frac{x^{2}+4 x-7}{(x+2)^{2}}$
(l) $\frac{e^{x}\left(x+x^{2}-1\right)}{x^{2}}$
(m) $\frac{2 x^{-\frac{1}{2}}-5 x^{\frac{1}{2}}}{2(5 x+2)^{2}}$
(n) $-\frac{12 x}{\left(6 x^{2}+7\right)^{2}}$
(4) $8(4 x-5)$
(5) $-\left(6 x^{2}+7\right)^{-2} \times 12 x=-\frac{12 x}{\left(6 x^{2}+7\right)^{2}}$
(6)
(a) $8 x e^{4 x^{2}}$
(b) $-\frac{1}{1-x}$
(c) $\frac{1}{\sqrt{2 x+1}}$
(d) $\frac{3 x^{2}-2 x}{3\left(x^{3}-x^{2}\right)^{\frac{2}{3}}}$
(e) $12 x^{2}\left(x^{3}+6\right)^{3} e^{\left(x^{3}+6\right)^{4}}$
(f) $20(2 x+1)^{9}$
(g) $b(x+a)^{b-1}$
(h) 1 (Hardly surprising since $\ln \left(e^{x}\right)=x$.)

