Maths Learning Service: Revision Mathematics IA Anti-differentiation (Integration)

Anti-differentiation

Anti-differentiation or integration is the reverse process to differentiation. For example, if $f^{\prime}(x)=2 x$, we know that this is the derivative of $f(x)=x^{2}$. Could there be any other possible answers?
If we shift the parabola $f(x)=x^{2}$ by sliding it up or down vertically, all the points on the curve will still have the same tangent slopes, i.e. derivatives. For example:

all have the same derivative function, $y^{\prime}=2 x$, so a general expression for this family of curves would be

$$
y=x^{2}+c \quad \text { where } c \text { is an arbitrary constant (called the integration constant). }
$$

Note: Where possible, check your answer by differentiating, remembering that the derivative of a constant, c, is zero.

In mathematical notation, this anti-derivative is written as

$$
\int 2 x d x=x^{2}+c
$$

The integration symbol " " is an extended S for "summation". (You will see why in Mathematics IM.)

The " $d x$ " part indicates that the integration is with respect to x. For instance, the integral $\int 2 x d t$ can not be found, unless x can be rewritten as some function of t.
Examples: (1) If $y^{\prime}=x$, then $y=\frac{1}{2} x^{2}+c \quad$ (Check: $y^{\prime}=\frac{1}{2} \times 2 x+0=x \checkmark$)
(2) If $y^{\prime}=x^{2}$, then $y=\frac{1}{3} x^{3}+c \quad\left(\right.$ Check: $\left.y^{\prime}=\frac{1}{3} \times 3 x^{2}+0=x^{2} \checkmark\right)$
(3) $\int x^{-3} d x=-\frac{x^{-2}}{2}+c \quad$ (Check: $\left.\frac{d}{d x}\left(-\frac{x^{-2}}{2}+c\right)=-2 \times-\frac{x^{-3}}{2}+0=x^{-3} \checkmark\right)$
(4) $\int x^{\frac{1}{2}} d x=\frac{x^{\frac{3}{2}}}{3 / 2}+c=\frac{2 x^{\frac{3}{2}}}{3}+c \quad\left(\right.$ Check: $\left.\frac{d}{d x}\left(\frac{2 x^{\frac{3}{2}}}{3}+c\right)=\frac{3}{2} \times \frac{2 x^{\frac{1}{2}}}{3}+0=x^{\frac{1}{2}} \checkmark\right)$

Notice that a pattern emerges which can be summarized in mathematical notation as

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+c
$$

for any real number n, except -1 .

When $n=-1$ this formula would give $\int x^{-1} d x=\frac{x^{0}}{0}+c$, which is undefined. However, the integral does exist. Since $\frac{d}{d x}(\ln x)=\frac{1}{x}$ we can say $\int x^{-1} d x=\ln |x|+c$.

As a consequence of other basic rules of differentiation, we also have

$$
\begin{aligned}
\int k g(x) d x & =k \int g(x) d x, \text { where } k \text { is a constant. } \\
\int(g(x)+h(x)) d x & =\int g(x) d x+\int h(x) d x \\
\int e^{a x+b} d x & =\frac{1}{a} e^{a x+b}+c, \text { where } a, b \text { and } c \text { are constants. }
\end{aligned}
$$

Examples: (1) $\int\left(x^{2}+x\right) d x=\frac{x^{3}}{3}+\frac{x^{2}}{2}+c \quad$ (2) $\int e^{3 x-2} d x=\frac{1}{3} e^{3 x-2}+c$

$$
\text { (3) } \int\left(4 x^{\frac{1}{2}}+3\right) d x=4 \times \frac{2 x^{\frac{3}{2}}}{3}+3 x+c=\frac{8 x^{\frac{3}{2}}}{3}+3 x+c
$$

Exercises

1. Find the following integrals. Check each answer by differentiating.
(a) $\int x^{9} d x$
(b) $\int x^{\frac{1}{4}} d x$
(c) $\int x^{-5} d x$
(d) $\int x^{-\frac{3}{2}} d x$
(e) $\int 1 d x$
2. Find the following integrals. Check each answer by differentiating.
(a) $\int\left(2 x^{\frac{1}{2}}+\frac{3}{x^{2}}+1\right) d x$
(b) $\int\left(1-4 x+9 x^{2}\right) d x$
(c) $\int(2 x+1)^{2} d x$
(d) $\int \frac{3}{x^{2}} d x$
(e) $\int e^{7 x} d x$
(f) $\int e^{-x-1} d x$

Definite Integration and areas under curves

The definite integral $\int_{a}^{b} f(x) d x$ is the number $F(b)-F(a)$, where $F(x)=\int f(x) d x$, the antiderivative of $f(x)$.
Example: $\int_{0}^{2}\left(x^{2}-x\right) d x=\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}+c\right]_{0}^{2}=\left(\frac{8}{3}-\frac{4}{2}+c\right)-\left(\frac{0}{3}-\frac{0}{2}+c\right)=\frac{2}{3}$.
Note: The constant c cancels out in definite integration.
If $f(x) \geq 0$ and continuous in the interval $a \leq x \leq b$ then $\int_{a}^{b} f(x) d x$ is the shaded area under the curve between a and b :

Example: $\int_{-1}^{2}(2 x+2) d x=\left[x^{2}+2 x\right]_{-1}^{2}=(4+4)-(1-2)=9$.
For this simple curve we can check the area:

The shaded area is $\frac{1}{2} \times 3 \times 6=9 \checkmark$.
The area enclosed between two curves $f(x)$ and $g(x)$, where $f(x) \geq g(x)$ in the interval $a \leq x \leq b$, is given by

$$
\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b}(f(x)-g(x)) d x
$$

irrespective of the position of the x-axis.
Example: Find the area enclosed between $f(x)=x+2$ and $g(x)=x^{2}+x-2$.
The curves intersect when $x+2=x^{2}+x-2$ or $x^{2}-4=(x-2)(x+2)=0$, ie. when $x= \pm 2$. Since $f(x) \geq g(x)$ in the interval $-2 \leq x \leq 2$ we have

$$
\begin{aligned}
\int_{-2}^{2}\left(x+2-\left(x^{2}+x-2\right)\right) d x & =\int_{-2}^{2}\left(4-x^{2}\right) d x \\
& =\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2} \\
& =\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right) \\
& =16-\frac{16}{3}=\frac{32}{3} \text { units }^{2}
\end{aligned}
$$

Exercises

3. Calculate
(a) $\int_{2}^{5} e^{x} d x$
(b) $\int_{-2}^{0} 3 x^{2} d x$
(c) $\int_{4}^{9} 2(\sqrt{x}-x) d x$
(d) $\int_{-2}^{-1}\left(2 x^{3}+\frac{1}{x^{2}}\right) d x$
4. Find the area between the following functions and the x-axis for the indicated interval.
(a) $x^{\frac{1}{3}} \quad, 1 \leq x \leq 8$
(b) $\sqrt{x}-x \quad, 4 \leq x \leq 9$
5. Find the area between (a) $y=x-2$ and $y=2 x-x^{2}$
(b) $y=x^{2}$ and $x=y^{2}$

ANSWERS

1. (a) $\frac{x^{10}}{10}+c$
(b) $\frac{4 x^{\frac{5}{4}}}{5}+c$
(c) $-\frac{x^{-4}}{4}+c$
(d) $-2 x^{-\frac{1}{2}}+c$
(e) $x+c$
2. (a) $\frac{4}{3} x^{\frac{3}{2}}-\frac{3}{x}+x+c$
(b) $x-2 x^{2}+3 x^{3}+c$
(c) $\frac{4}{3} x^{3}+2 x^{2}+x+c$
(d) $-\frac{3}{x}+c$
(e) $\frac{1}{7} e^{7 x}+c$
(f) $-e^{-x-1}+c$
3. (a) 141.024
(b) 8
(c) $-39 \frac{2}{3}$
(d) -7
4. (a) $11 \frac{1}{4}$
(b) $19 \frac{5}{6}$
5. (a) $4 \frac{1}{2}$

(b) $\frac{1}{3}$

