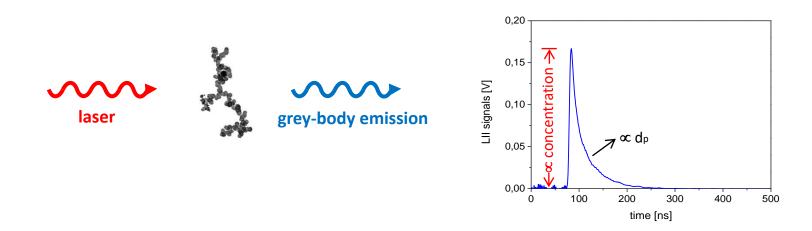


A look at soot optical properties during laser-induced incandescence measurements

Francesca Migliorini francesca.migliorini@cnr.it

7th ISF Workshop on the Measurement and Computation of Reacting flows with Carbon Nanoparticles

July 20th-21st,2024 - Milan


- * Brief recall of laser-induced incandescence (LII) technique
- * Quick overview of recent work on soot optical properties
- * Effect of laser irradiation on soot optical properties during LII
- * Final remarks and next challenges

LII is based on the irradiation of particles with a high-power pulsed laser and the detection of the subsequent incandescence emission signal

- → Determination of **soot volume fraction**, f_v Single color/two colors detection
- → Measurements of **primary particle size**
 - TIRE-LII technique

- * High selectivity for measuring carbon nanoparticles
- * High temporal and spatial resolution \rightarrow on-line measurements
- *~ High sensitivity and wide dynamic range $\rightarrow~ng/m^3-~g/m^3$

Broad spectra of applications:

- Flames
- Engines
- Exhaust gases
- Ambient atmosphere
- **Engineered nanoparticles**
- **Suspensions**

New challenges

- LII sensitivity to small/nascent particles \checkmark
- LII sensitivity to low concentration in engines/combustors \checkmark

Main drawback of LII sensitivity toward the optical properties of the particles

Double dare

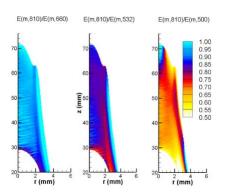
- 1. knowledge of the optical properties of particles with different nature
- 2. effect of laser irradiation on the optical properties

ISF-7, July 20th-21st, 2024 - Milan

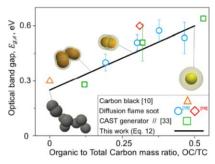
Trend in the past two years...

- \rightarrow employment of 2D configuration (especially in practical systems)
- \rightarrow application of LII to retrieve E(m)
- \rightarrow application of LII to study "emerging fuels" (blends/additive/surrogates...)

Optical properties of soot



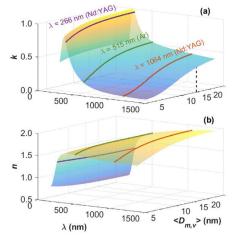
Optical properties can be expressed as:

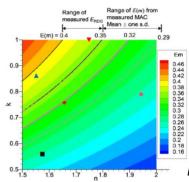

- ✓ Complex refractive index, m= n-ik
- Soot refractive index absorption function, E(m)
- ✓ Dispersion exponent, ξ or **a**
- ✓ Optical band gap, Eg

ISF-7, July 20th-21st, 2024 - Milan

✓ Mass absorption cross section, MAC

Yon et al., Combust. Flame 227 (2021) 147-161

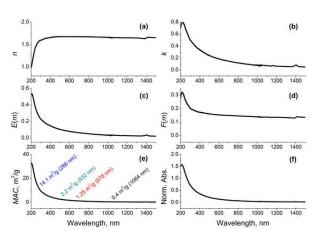

Kelesidis et al.,Carbon 172 (2021) 742-749


Dependent on:

- ✓ chemical composition/ maturity degree
- ✓ inner structure
- ✓ particle size

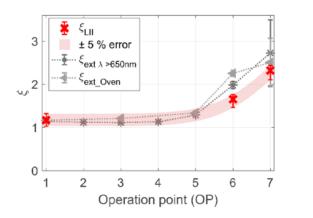
✓ ...

Wan et al., Proc. Combust. Inst. 38 (2021) 1517-1524



Liu et al., Aerosol Sci. Tech. 54 (2020) 33-51

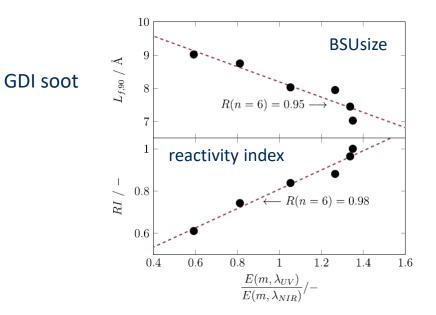
Hot topic in literature


Minutolo et al., Proc. Combust. Inst. 39 (2023) 1129-1138

Optical properties from LII

2λ-2C-LII

- → Absorption efficiency of differently matured soot
- \rightarrow Dispersion coefficient from LII

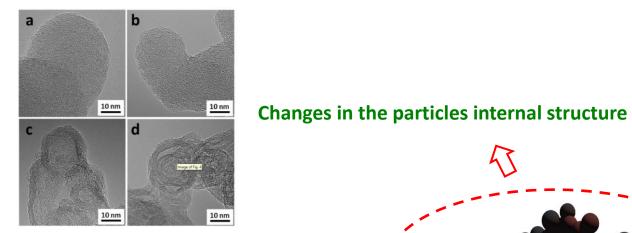


wide spread of $E(m, \lambda)$ for soot of different maturity: E(m, 1064)young= $0.05 \rightarrow E(m, 1064)$ mature 0.33

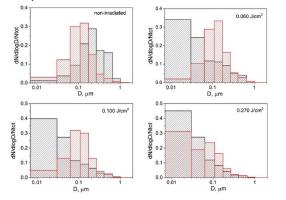
Török et al., Appl. Phys. B 127 (2021) 96

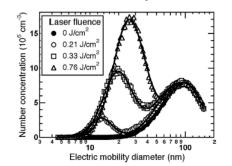
Dual-pulse 2C Tire-LII

- \rightarrow rapid, non-intrusive determination of E(m, λ UV)/E(m, λ NIR)
- \rightarrow absolute E(m, λ)

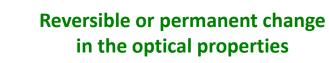

 $E(m, \lambda UV)/E(m, \lambda NIR)$ can be used to estimate any nanostructure-associated particle property

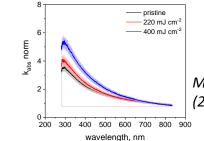
Hagen et al., Combust. Flame 254 (2023) 112850


Effects of laser irradiation on soot particles

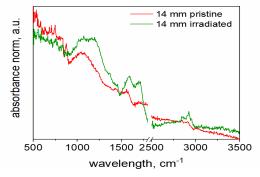


Apicella et al., Combust. Flame 204 (2019) 13–22


Migliorini et al., Exp. Therm Fluid Sci. 114 (2020) 110064



Formation of new particles


Michelsen et al., Appl. Opt 46 (2007) 959-977

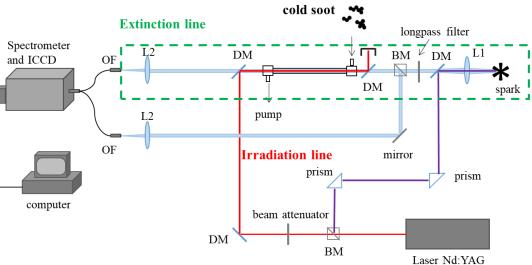
Migliorini et al., Appl Phys B 129 (2023) 129-133

Changes in particles chemistry

Thomson et al., Appl Phys B 104 (2011) 307-319

Migliorini et al., under revision

Apicena et al., combast. Flame 204 (2019) 15–2


ISF-7, July 20th-21st, 2024 - Milan

Soot absorption properties during LII

What happens during LII time-scale?

Wavelength-resolved extinction measurement during LII pulse

- Cold soot from a quenched ethylene diffusion flame (custom-made soot generator): mature soot \rightarrow
- Laser-heating of soot particles \rightarrow
 - Nd-YAG laser : 1064 nm excitation wavelength
 - Beam diameter = 5 mm, Top-hat profile
 - Different laser fluences
- → Wavelength-resolved extinction measurements
 - pristine particle (no laser irradiation)
 - at the LII peak
 - few seconds after the LII pulse

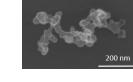
(2023) 129:90

Francesca Migliorini¹ · Roberto Dondè¹ · Silvana De Iuliis¹

https://doi.org/10.1007/s00340-023-08036-5

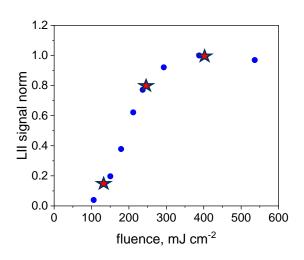
Applied Physics B

RESEARCH



Applied Physics B

Lasers and Optics

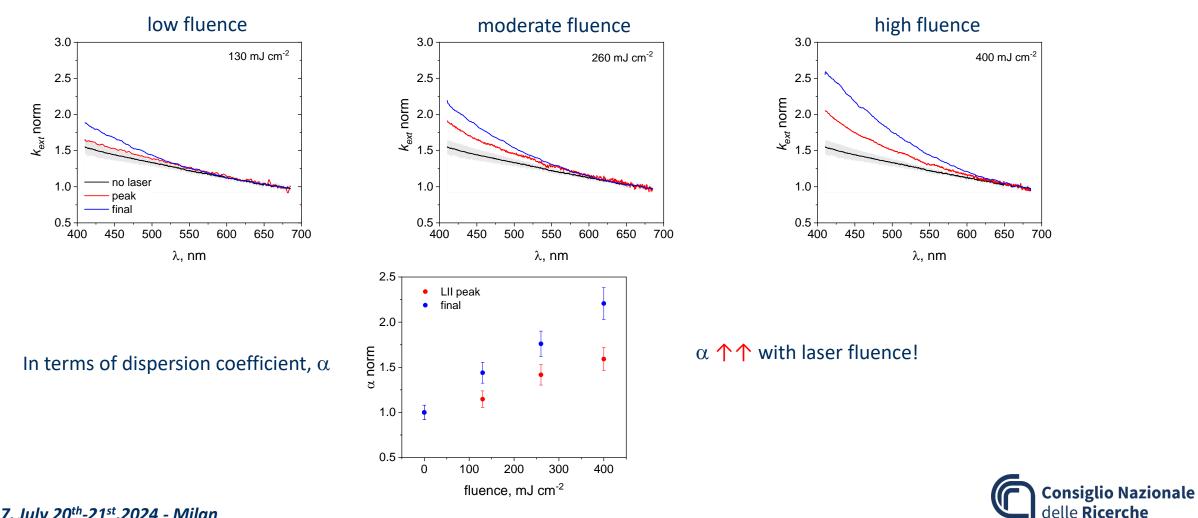

Good practice in LII measurements

ightarrow look at the LII signal vs laser fluence curve!

Fluence curve depends on:

- 1. Particles properties
- 2. Experimental set-up (spatial and temporal laser profile, detection,...)

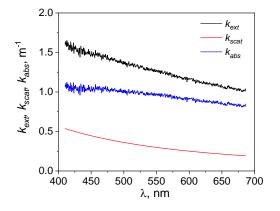
ensure to be at a fluence equal to or greater than that required for the onset of the fluence plateau regime, while remaining below the fluence that produces significant sublimation

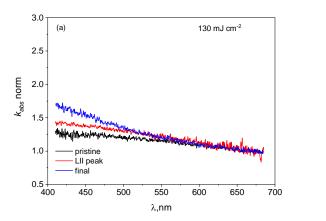

Three fluence investigated:

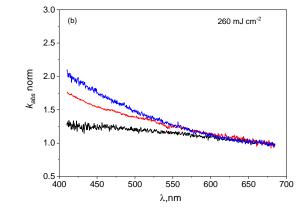
- ★ 130 mJ cm⁻²: low fluence regime
- ★ 260 mJ cm⁻²: moderate fluence
- ★ 400 mJ cm⁻²: high fluence (close to sublimation)

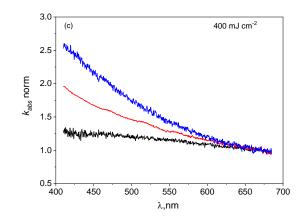
\rightarrow Info on optical properties

- LII peak
- Final = few seconds after the LII pulse

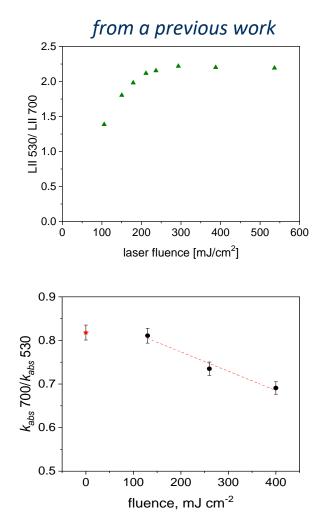


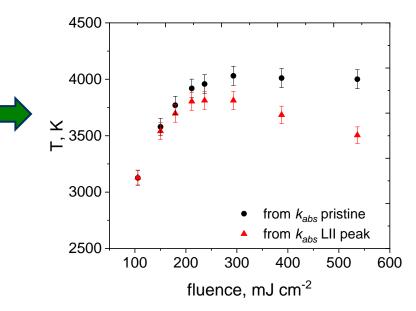

Scattering correction to extinction




- \rightarrow **k**_{ext} is obtained directly from the transmissivity measurements
- \rightarrow **k**_{scat} is evaluated assuming:
 - Scattering Ångström Exponent (SAE) = 2
 - Single Scattering Albedo at 480 nm from a previous work

ightarrow **k**_{abs} = **k**_{ext}- **k**_{scat}



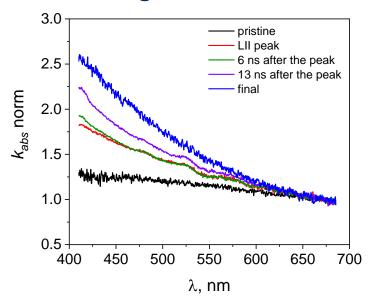

Impact on LII data interpretation

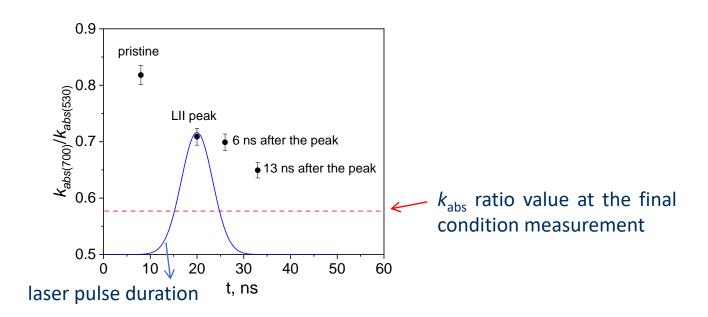
Particle temperature from 2C-LII

$$T = \frac{hc}{K_B} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right) \left[ln \left(\frac{S_1 k_{abs(\lambda_2)}}{S_2 k_{abs(\lambda_1)}} \right) \left(\frac{\lambda_1}{\lambda_2} \right)^5 \right]^{-1}$$

evident reduction in the incandescence temperature is observed for fluences above 250 mJ $\rm cm^{-2}$

\mathbf{r}


Implication on soot volume fraction evaluation



ISF-7, July 20th-21st,2024 - Milan

Significant change within the laser pulse

- → Possible implications on:
 - * Soot volume fraction
 - * Tire-LII \rightarrow particle size
 - * Delayed LII detection
 - * Gated LII detection

Take-home message

The knowledge of optical properties is paramount for:

- improving the understanding of soot formation pathways
- ✓ the interpretation of optical diagnostics

LII is a valid/robust diagnostic tool for studying practical system but:

- ✓ care has to be taken in the choice of the appropriate laser fluence for measurements
- the optical properties of the particles might change during the laser pulse depending on laser fluence and the nature of the particles
 - \rightarrow the laser fluence threshold may vary according to the efficiency of the heating process

Emerging fuels (blended/additives/surrogates...) will be a new challenge

ightarrow small particles, low concentration, different chemical composition

Wavelenght-resolved extinction measurements are a good option to gain information on optical properties

 \rightarrow great advantage in the choice of LII detection wavelengths for particles temperature determination from pyrometry

Wavelenght-resolved extinction measurements might not be always practically feasible

- \rightarrow we need more tools:
 - ✓ LII itself can help (see Lang et al., Appl Phys B (2023) 129:147)
 - ✓ Modelling
 - Physical-chemical characterization of laser-irradiated particles
 - ✓ …

Istituto di Chimica e della Materia Condensata e di Tecnologie per l'Energia

For more details and a closer look to our experimental facilities you are welcome to come and visit us at CNR-ICMATE during your stay in Milan

Via Roberto Cozzi 53, 20125 Milano

Thank you for your attention!