

Measurement and Computation of Reacting Flows with Carbon Nanoparticles (ISF) Workshop *Combustion Institute 40th Int'l Symposium* 20 July 2024

Direct solar-thermal synthesis of flake graphite and hydrogen via methane decomposition

Prof. Timothy S. Fisher* Schauerman Endowed Chair in Engineering UCLA Mechanical & Aerospace Engineering Department

With Faculty: Mitchell Spearrin* (MAE), Yves Rubin (Chemistry)

Acknowledgement: Support from the CNSI Noble Family Innovation Fund, California Energy Commission, and US Dept of Energy is very much appreciated.

Students/Postdocs: Mostafa Abuseada (MAE), Abdalla Alghfeli (MAE), Chuyu Wei (MAE), Barathan Jeevaratanam (MAE), Julia Chang (Chemistry), Hengrui Xu (MAE), others as noted in slides

*also Co-Founder of SolGrapH Inc., a startup company involved with solar-thermal synthesis of materials; this talk is an academic briefing outside the scope of any commercialization activity.

Motivation – Clean/Circular Materials Production

- Manufacturing processes are often highly energyintensive, even when the energy is primarily used for simple heating processes
- Direct solar-thermal green manufacturing provides a compelling, though seldom studied, option
- Reducing greenhouse gas emissions from the industrial sector can be achieved by utilizing renewable energy sources
- Semiconductor and electronic materials manufacturing is a major culprit of inefficient energy and resource use [2]

[1] <https://blog.repurpose.global/green-manufacturing-the-business-benefits-of-sustainability/> [2] Krishna et al., Environ. Sci. Technol. 2008, 42, 8, 3069–3075

Introduction

Samueli

Mechanical & Aerospace Engineering

• Methane decomposition global reaction

 $CH_4 \rightarrow C + 2H_2$ $(\Delta H^o = 75.6 \text{ kJ/mol})$

• Proceeds at *T* > 1000 K, enhanced by pressure reduction (Le Chatelier's principle), with a complex stepwise dehydrogenation mechanism $-{\rm H}_2$ $-{\rm H}_2$ $-{\rm H}_2$ $-{\rm H}_2$

 $2CH₄$ C_2H_6 C_2H_4 C_2H_2 2C

- Provides storable and transportable solar fuel (H_2)
- Carbon product can be carbon black, graphite, nanotubes, etc., improving process economics
- With solar energy, \sim 14 kg-equivalent CO₂/kg H₂ emissions are avoided for H_2 + C production

Cost of H² production (per kg):

1) Steam Methane Reform. (SMR) = \$1-1.5 2) SMR + CCUS > \$2 **3) CH⁴ pyrolysis ~ \$2-3** 4) $H₂O$ electrolysis $> 4 *CCUS: Carbon capture, utilization, storage **ELECTRICITY** CARBON \sum AIR IN CATHODE
gen reductio **FUEL** ANODE **EXCESS** CO₂ OUT < AIR OUT [1] A. Kacprzak, *International Journal of Energy Research*,

43(1), 65-85, 2019

Challenges in Methane Pyrolysis

Challenges (solar and non-solar):

- 1) High operating temperatures or low product yields catalysts
- 2) Reactor clogging and deposition on walls avoid carbon product or use molten salts
- 3) Carbon deposition on window indirectly irradiated solar reactors
- 4) Low-quality carbon black product: D/G Raman peak ratio > 1.5, no 2D Raman peak – use of metallic catalysts
- 5) Slow startup thermal response: > 1 hour
- 6) Catalyst sintering, deactivation, and purification (when applicable)

12877-12886, 2011

Prior work on solar-thermal CH⁴ decomposition

Hydrogen from natural gas using a vortex-flow of Hydrogen from methane using carbon black carbon particles [1]

catalysts in an indirect packed bed [2]

Pilot-scale indirect reactor for hydrogen and carbon black from methane [3]

[1] Hirsch, D., & Steinfeld, A. (2004). International Journal of Hydrogen Energy, 29(1), 47-55. [2] Abanades, S., Kimura, H., & Otsuka, H. (2014). International journal of hydrogen energy, 39(33), 18770 -18783. [3] Rodat, S., Abanades, S., Sans, J. L., & Flamant, G. (2010). International Journal of Hydrogen Energy, 35(15), 7748-7758.

UCLA Samueli Mechanical & Aerospace Engineering

Solar Methane Pyrolysis Process (lab)

UCL Samueli Mechanical & Aerospace Engineering

Reactor Assembly and Components

UCLA

Samueli

Mostafa Abuseada PhD 2022

Abdalla Alghfeli PhD 2022

Beautifully Complex Thermochemical Reacting Flow and Transport Problem

Methane Pyrolysis Conditions and Metrics

Operating conditions:

- Peak gross irradiance, 2000-4500 suns
- Total net radiant power, 1-4 kW
- Pure methane flow, 100-1000 sccm
- Pressure, 10-200 Torr
- Duration of decomposition, 5-100 min
- Typical gas residence time, 1-100 ms

$$
t_{\text{res}} = \frac{L}{v} = \frac{\left(L\rho_{\text{CH}_4}\pi D^2\right)}{4\dot{m}_{\text{CH}_4}}
$$

• Temperature, 700-2000 K

Mechanical & Aerospace Engineering

UCL

Samueli

NO ADDED CATALYST! MANY POROUS SUBSTRATES HAVE PRODUCED NEARLY IDENTICAL RESULTS

Chemical performance indicators (via mass $n_{\text{CH}_4,\text{in}} - \dot{n}_{\text{out}} x_{\text{CH}_4}$ balance): $X_{\text{CH}_4} =$ $\dot{n}_{\text{CH}_4,\text{in}}$ Methane conversion $\dot{n}_{\text{out}}x_{\text{H}_2}$ • Hydrogen yield Y_{H_2} = $2n_{\text{CH}_4,\text{in}}$ $\dot{m}_{\rm C}$ Carbon yield $Y_{C} =$ $M_{\rm C} \dot{n}_{\rm CH_4,in}$ a) b 30 1500 1400 20 1300 y Position [mm]
 $\frac{1}{6}$ o $\frac{1}{6}$ $1200 - \frac{1}{20}$ $1100 - 72$ $1000 \frac{1}{20}$ 900 云 800 700 -20 600 500 -30 20 mm Area of significant -30 -20 -10 20 30 θ 10 carbon deposition x Position [mm]

Abuseada ⁹ *et al. ACS Energy & Fuels*, **38** 3920 (2022)

Pyrolysis Performance

Process stable over time (~20 min)

Samueli

Mechanical & Aerospace Engineering

- $CH₄$ conversion = 73% and H₂ conversion = 69%
- Carbon felt weight increase by 0.62 $g \rightarrow C$ yield (actual) = 58%
- C theoretical yield (mass balance) = $58.3\% \rightarrow$ indication that nearly all carbon captured in felt
- Largest byproduct is acetylene (C_2H_2) likely due to short residence time

Barathan J. PhD student (Spearrin group)

Process Time Response

UCLA Mechanical & Aerospace Engineering

Not All 'Graphitic' Materials are the Same…

Prior work:

Samueli

Mechanical & Aerospace Engineering

- Carbon catalysts produce amorphous carbon [1-3]
- No Raman 2D peak or XRD peaks [4,5]
- Raman D/G ratios ~0.5 with metal catalysts [6,7] (typically 0.2 or less in central zone here)

[1] S. Abanades, H. Kimura, H. Otsuka, *Fuel*, 153, 56-66, 2015 [2] G. Maag et al., *International Journal of Hydrogen Energy*, 34(18), 7676-7685, 2009 [3] S. Abanades et al., *International Journal of Hydrogen Energy*, *39*(33), 18770-18783, 2014 [4] J.L. Pinilla et al., *International Journal of Hydrogen Energy*, 37(12), 9645-9655, 2012 [5] S. Rodat et al., *Solar Energy*, *85*(4), 645-652, 2011 [6] Y. Pan et al., Carbon, 192, 84-92, 2022 [7] X. Guo et al., Carbon, 50, 321-322, 2012 UCI

Processing Time for Graphitization

Conventional Pet Coke Graphitization

(Jäger et al, Industrial Carbons, DOI: 10.1002/14356007.n05_n03, 2012)

Figure 12. Temperature cycles of the Acheson furnace (a) and Castner furnace (b) Samueli

Mechanical & Aerospace Engineering

UC

This Process

 CH_4 residence time: 1-100 ms Diameter growth < 20 min: 10 to 100 μm

Mostafa Abuseada

14

UCLA Samueli Mechanical & Aerospace Engineering

Mechanical & Aerospace Engineering

Local thermal transport is complex

$$
\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) = 0
$$

$$
-k(T)\frac{\partial T}{\partial r}\bigg|_{r=R}=q_R^{\text{\,II}}
$$

$$
-k(T)\frac{\partial T}{\partial z}\bigg|_{z=0} = \alpha_s q_s^{\prime\prime} + \alpha_{sur} \sigma T_{sur}^4 - \varepsilon \sigma T^4
$$

$$
-k(T)\frac{\partial T}{\partial z}\bigg|_{z=Z} = \alpha_{sur} \sigma T_{sur}^4 - \varepsilon \sigma T^4
$$

UCLA Samueli Mechanical & Aerospace Engineering

$$
k(T) = w_0 T^3 + w_1 T^{-1}
$$

Field scale-up (many additional challenges)

UCLA

17

Thank you!

See related poster at CI 40:

Kuenning et al., "Direct solar-thermal pyrolysis of biogas for graphite and syngas production assessed via laser spectroscopy"

Poster #4P126 Th 25 July, 1000-1700