MECH ENG 7024 - Robotics M
North Terrace Campus - Semester 1 - 2023
-
General Course Information
Course Details
Course Code MECH ENG 7024 Course Robotics M Coordinating Unit School of Mechanical Engineering Term Semester 1 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Contact Up to 4 hours per week Available for Study Abroad and Exchange Y Assumed Knowledge MATHS 1012, MECH ENG 2019, MECH ENG 3028, or equivalent. Assessment Quizzes, Assignments, Project, Final exam Course Staff
Course Coordinator: Dr Tien-Fu Lu
Course Timetable
The full timetable of all activities for this course can be accessed from Course Planner.
-
Learning Outcomes
Course Learning Outcomes
On successful completion of this course students will be able to:
1 Explain the basics of robotic systems; 2 Define the needs, acquire necessary information and select appropriate robots for various industrial applications; 3 Explain robot design and development processes, and their vast applications; 4 Apply the knowledge learned for the design and development of simple robotic aspects; 5 Explain the principles of and apply robot kinematics, dynamics, motion planning, trajectory generation and control; 6 Explain the basics of other robotic topics covered in the course (i.e. machine vision, mobile robot, etc); 7 Recognise the responsibility of engineers for the safety issues and the importance associated with the use of robots for various applications; 8 Demonstrate the ability to work in team based small projects and effectively use
interpersonal communication skills to produce productive solution.
The above course learning outcomes are aligned with the Engineers Australia Stage 1 Competency Standard for the Professional Engineer.
The course is designed to develop the following Elements of Competency: 1.1 1.2 1.3 1.4 1.5 1.6 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 3.5 3.6
University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Attribute 1: Deep discipline knowledge and intellectual breadth
Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.
1-5,8 Attribute 2: Creative and critical thinking, and problem solving
Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.
1-4,8 Attribute 3: Teamwork and communication skills
Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.
1,8 Attribute 4: Professionalism and leadership readiness
Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.
2-5,7-8 Attribute 5: Intercultural and ethical competency
Graduates are responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.
2-8 Attribute 8: Self-awareness and emotional intelligence
Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.
4-6,8 -
Learning Resources
Required Resources
- Text book: Craig, J. J., Introduction to Robotics, Mechanics and Control, 3rd Edition, Addison Wesley, 2005 (available from Unibooks)
- Lecture notes available as printed copy from the Image & Copy Centre at the beginning of the semester and electronic copy available via MyUni;
Recommended Resources
Recommended Reading:
- LOW, K.H., “Robotics, principles and systems modeling,” 2nd edition, Prentice Hall, 2004
- Schilling, R. J., Fundamentals of Robotics - Analysis & Control, Prentice Hall, 1991;
- Lewis, F. L., Abdallah, C. T., Dawson, D. M., Control of robot manipulators, Macmillan Publishing Company, 1993;
- Web sites, such as: www-sop.inria.fr/saga/personnel/merlet/merlet_eng.html.
- Other materials including journal and conference papers provided through out the semester.
Online Learning
Course related materials including announcements, lecture notes, tutorial materials, project information and so on will be made available in MyUni. Students are asked to access MyUni regularly (preferred at least once a week) for the course related information and materials throught out the semester. For more information, please visit MyUni Support.
-
Learning & Teaching Activities
Learning & Teaching Modes
- Lectures to cover the contents described in Section 1.1 course description and enhanced by videos and real life examples.
- Tutorials to support the covered contents adopting problem-solving principles.
- Quizzes and assignments for students to exercise the knowledge learned.
- Lab sessions to exercise and integrate the contents covered in the lectures as well as to extend further beyond.
Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
In addition to fours hours a week for lectures, tutorial and project activities in classes, averaged three hours per week are estimated to be necessary to review the contents learned and work on assignments, tutorial questions and one team based project to achieve good learning results.
Learning Activities Summary
Introduction to robotic systems (1 hours lecture, 1 hour lab preparation)
- definitions for various robotic terms
- industrial robots and applications
- mobile robots and applications
- parallel robots and applications
- New development and trends of robotics
Spatial descriptions (2 hour lectures, 1 hour tutorial, 2 hours lab)
- coordinate frames
- coordinate translation and rotation
- homogeneous transformation
- compound transformation
- raw-pitch-yaw and euler angles
- inversed rotation matrix
Kinematics (4 hours lectures, 2 hours tutorial, 4 hours lab)
- forward kinematics
- denavit-hartenberg notation
- joint space and cartesian space
- inverse kinematics
- solvability of the inverse kinematics problems
- algebraic solution and geometric solution
- pieper’s solution
- kinemtaics of parallel robots
Jacobians (2 hours lectures, 1 hour tutorial, 2 hours lab)
- linear and rotational velocity of rigid bodies
- motion of the links of a robot
- velocity propagation from link to link
- angular and linear velocities of robot links
- Jacobians
- singularities
- static forces propagate from link to link
- Jacobians in force domain
Dynamics (4 hours lectures, 2 hours tutorial, 4 hours lab)
- Lagrangian formulation
- Kinetic and potential energy
- Euler dynamic formulation
- the force and torque acting on a link
Trajectory generation (2 hours lectures, 1 hour tutorial, 4 hours lab)
- introduction
- joint space schemes
- cartesian schemes
Position and force control (2 hours lectures, 1 hour tutorial, 4 hours lab)
- control of manipulators
- control law partitioning
- trajectory following control
- nonlinear and varying systems
- model-based control for manipulators
- current industrial robot control systems
In total, there are 46 hours lectures, tutorials, and labs. The number of hours for lectures, tutorial and labs are subject to vary slightly.
Specific Course Requirements
Not applicable. -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment Task Weighting (%) Individual/ Group Formative/ Summative Due (week)* Hurdle criteria Learning outcomes Assignments x4 20 Individual Summative Weeks 2-12 1. 2. 3. 4. 5. Quizzes x4 10 Individual Summative Weeks 2-12 1. 2. 3. 4. 5. Lab reports 20 Group Formative Weeks 2-12 1. 2. 3. 4. 5. 6. 7. 8. Exam 50 Individual Summative Exam week 1. 2. 3. 4. 5. 6. 7.
This assessment breakdown complies with the University's Assessment for Coursework Programs Policy.Assessment Related Requirements
Continuous assessment is required which needs the students to pass the assignments (averaged) and project to sit for the final examination.
Assessment Detail
- Assignments: Assignments will be set and related to the topics described in Section 4.3 learning activity summary.
- Lab reports: Lab reports will be required to be submitted.
- Final exam: The final exam will be set to test the robotic knowledge learned.
Submission
Assignments and project report (hardcopy) need to be submitted with cover sheet to the submission box, which has the correct course label, located on level 2 of Engineering South building before the deadline. Students are required to use TURNITIN and attached the report to their project reports. Electronic copy of project report as well as programs developed for the project also need to be submitted to the email address that will be specified at the beginning of the semester. Every one day late submission (both assignments and project report) will incur 10% mark deduction. Due dates may be extended with genuine reasons which needs to communicate with the lecturer face-to-face or by emails. The turn-around timeline on assessments and the provision of feedback is two weeks after the submission deadline.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through Access Adelaide.
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- International Student Support
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
- YouX Student Care - Advocacy, confidential counselling, welfare support and advice
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Elder Conservatorium of Music Noise Management Plan
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.
The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.