MECH ENG 7059 - Finite Element Analysis of Structures

North Terrace Campus - Semester 1 - 2014

The course will equip students with the necessary knowledge to use finite element analysis to solve problems related to solid mechanics, dynamics, heat-transfer and acoustics. FEA is a design/research tool that is extensively used in industry and research institutions. Students will also gain hands-on experience in using finite element analysis software ANSYS to solve realistic engineering problems.

  • General Course Information
    Course Details
    Course Code MECH ENG 7059
    Course Finite Element Analysis of Structures
    Coordinating Unit School of Mechanical Engineering
    Term Semester 1
    Level Postgraduate Coursework
    Location/s North Terrace Campus
    Units 3
    Contact Up to 4 hours per week
    Assumed Knowledge C&ENVENG 1010, MECH ENG 1007, MECH ENG 2002, MECH ENG 2021 & MATHS 2202
    Assessment Assignments, Quizzes, Project, Final exam
    Course Staff

    Course Coordinator: Dr John Codrington

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes

    On completion of the course, students should:

    1 Have a good understanding of the principles of current finite element modelling techniques applied to solid mechanics, dynamics heat transfer, and acoustics;
    2 Be equipped with basic understanding of the mathematical representation of the various processes involving stresses in structures, vibration of structures, transfer and conservation of heat;
    3 Have a deep understanding of limitations and applications of current techniques and codes to solve complex engineering problems;
    4 Have developed analytical cognitive skills and improve problem solving skills in these areas;
    5 Undertake a self directed project to use FEA as a tool to solve an engineering problem;
    6 To be able to write a professional engineering report;
    7 To be able to critically assess a finite element analysis for correctness;
    8 Understand the need to undertake lifelong learning.
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Knowledge and understanding of the content and techniques of a chosen discipline at advanced levels that are internationally recognised. 1-7
    The ability to locate, analyse, evaluate and synthesise information from a wide variety of sources in a planned and timely manner. 1-7
    An ability to apply effective, creative and innovative solutions, both independently and cooperatively, to current and future problems. 1-7
    Skills of a high order in interpersonal understanding, teamwork and communication. 1-7
    A proficiency in the appropriate use of contemporary technologies. 1-7
    A commitment to continuous learning and the capacity to maintain intellectual curiosity throughout life. 8
    A commitment to the highest standards of professional endeavour and the ability to take a leadership role in the community. 1-7
  • Learning Resources
    Required Resources

    Access to the Computer Aided Teaching Suites, Printed Tutorial Notes from the Image & Copy Centre, and Access to MyUni.

    Recommended Resources

    Printed Course Notes from the Image & Copy Centre and library textbooks on Finite Element Analysis (recommended books will be discussed in class).

    Online Learning

    Course material and additional study resources are provided via MyUni. The online tutorial quizzes that are part of the assessment will be available through MyUni.

  • Learning & Teaching Activities
    Learning & Teaching Modes

    Teaching and learning modes for this course are through contact lectures, computer laboratories in the Computer Aided Teaching Suites (CATS), self-study, and a project using finite element analysis software. The lectures provide the background theory for the subject, and the computer laboratories provide learners with the practical experience in using Finite Element Analysis software to solve engineering problems. The FEA Project is an integral part of the course learning and outcomes, and is used to develop the graduate attributes of the learners. The FEA project enables Learners to demonstrate their knowledge gained from the course by independently solving a complex engineering problem. Online quizzes are a formative part of the learning experience and provide learners with the ability to demonstrate their understanding of the course material.

    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Lecture Contact Hours: 24 hours
    Tutorial Contact Hours: 24 hours
    FEA Project: > 50 hours
    Exam Preparation: 34 hours
    Assignments: 12 hours
    Lecture preparation: 12 hours
    Total: 156 hours
    Learning Activities Summary

    Fundamentals of Finite Element Analysis

    • Why FEA?
    • The finite element procedure
    • Conceptualisation of real problems
    • Pre-processing and Considerations of finite element modelling
    • Solving
    • Post-processing and Interpreting results
    • Verification and validation

    Theory of the Finite Element Method

    • The finite element method
    • Nodes and elements
    • Direct element formulation
    • Weighted residuals formulation
    • Minimum potential energy formulation
    • Shape functions
    • Background on numerical methods

    Meshing

    • Mesh density and refinement
    • Mesh structure
    • Mesh quality
    • Mesh independence
    • How to create a good mesh
    • Meshing and modelling real structures

    Heat transfer analysis

    • Review of heat transfer theory
    • Finite element method for heat transfer
    • Non-linear & transient analyses
    • Coupled field analysis

    Non-linear analysis

    • Types of non-linearity
    • Non-linear solution methods
    • Geometric non-linearity
    • Material non-linearity
    • Contact

    Dynamic analysis

    • Equation of motion
    • Modal analysis
    • Harmonic analysis
    • Response spectrum analysis
    • Transient (implicit) analysis
    • Damping

    Buckling

    • Stability
    • Buckling theory
    • Linear (eigenvalue) buckling
    • Non-linear buckling analysis

    Explicit dynamics

    • Time integration schemes
    • Governing equations
    • Solution procedure
    • Modelling considerations

    Acoustics

    • Fluid-structure interaction
    • Theory of acoustics
    • Element formulation
    • Modelling considerations

    Additional topics (time permitting)

    • Rigid body dynamics
    • Sub-modelling and Sub-structuring
    • Fracture and Fatigue
    Specific Course Requirements

    Access to CATS will be required to complete the tutorial sessions and the FEA Project.

  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary

    The following is an outline of the assessment for this course. Please note that while every effort has been made to ensure that this information reflects an accurate plan, the coordinator reserves the right to make changes that ensure the continual improvement of the course. Any such changes will be made clear during the lectures and via MyUni.

    Component Weighting Learning Outcome
    Online quizzes and
    Written Assignments
    20% 1-4
    FEA Project 20% (compulsory) 1-8
    Final Exam 60% (compulsory) 1.4.7
    Assessment Related Requirements

    Completion of the FEA Project with a grading of Pass or higher is required.

    Assessment Detail

    The online quizzes comprise multiple choice answers, and some short descriptive answers. The online quizzes are to be submitted before the commencement of the following lecture, where the answers will be provided. Late submission of the online quizzes will not be accepted as the answers will be discussed at the following lecture.

    The written assignments are provided as part of the learning experience. Students are expected to enhance their knowledge and understanding of the subject matter through completing the assignments. The assignments are marked and the results included in the final assessment to ensure that students actually do the assignments and take them seriously. Solutions to the assignments are discussed in class.

    The FEA project provides students with the opportunity to demonstrate their comprehension of the course material. The project is marked and included in the final assessment so that students take it seriously.

    Assignments and the project are also used to help assess whether the required graduate attributes are being developed.

    The examination is a summative assessment and is intended to assess the student’s knowledge and understanding of the course material and how it fits into the global engineering context. The final examination is open-book.

    The Late Penalty for assignments and the FEA Project is 10% per each end of day. Hence weekends lose 3 days = 30%.

    Submission

    The online quizzes will be submitted through MyUni (MapleTA).

    Written assignments are to be submitted to the appropriate submissions box located on level 2 of Engineering South Building with a standard plagiarism coversheet completed and attached to the assignment.

    Late submission of the online quizzes will not be accepted as the answers will be discussed at the following lecture the next day.

    The Late Penalty for assignments and the FEA Project is 10% per each end of day. Hence weekends lose 3 days = 30%.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.