MECH ENG 7047 - Dynamics & Control II
North Terrace Campus - Semester 2 - 2016
The course information on this page is being finalised for 2016. Please check again before classes commence.
-
General Course Information
Course Details
Course Code MECH ENG 7047 Course Dynamics & Control II Coordinating Unit School of Mechanical Engineering Term Semester 2 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Contact Up to 7 hours per week Available for Study Abroad and Exchange Y Assumed Knowledge 6 units of Level II Applied Maths courses, MECH ENG 1007, MECH ENG 2019 Assessment Assignments, laboratory experiments, final exam Course Staff
Course Coordinator: Dr William Robertson
Name Role Building/Room Email Mr Gareth Bridges Lecturer Eng.&Maths .Sciences Building,EM206/207 gareth.bridges@adelaide.edu.au Course Timetable
The full timetable of all activities for this course can be accessed from Course Planner.
-
Learning Outcomes
Course Learning Outcomes
On completion of the course, students should:
1 Have a good understanding of the principles of vibrations; 2 Understand the concepts of vibration modes and natural frequencies; 3 Be able to calculate estimates for the lowest natural frequencies for single and multiple degree-of-freedom, continuous, and combined systems for both rectilinear and rotational motion; 4 Understand the influence of mass, stiffness and damping on the motion of vibratory systems; 5 Have a good understanding of how to measure the damping of simple vibratory systems; 6 Understand the principles controlling the response of forced vibratory systems; 7 Understand principles of vibration isolation, and be capable of specifying vibration isolators for a range of applications; 8 Be capable of designing single degree-of-freedom tuned vibration absorbers; 9 Have a basic understanding of the modes and natural frequencies of simple, idealized continuous systems; 10 Understand the fundamentals of modelling complex continuous systems with discrete lumped-masses and springs. 11 Have an understanding of basic control concepts such as controllability, observability, poles and zeros, stability; 12 Be able to construct state space models of a given dynamic system; 13 Be able to design a full-state control system; 14 Be able to design an optimal control system and understand the balance that is achieved when designing for optimality; 15 Be able to design an observer to estimate system states; 16 Have had some exposure to stochastic state estimation; 17 Be able to design a controller for command tracking; 18 Have had experience with designing real control systems. University Graduate Attributes
No information currently available.
-
Learning Resources
Required Resources
Course Notes available from Image & Copy Centre or softcopy on MyUni.Recommended Resources
Inman, D.J., Engineering Vibration, Prentice Hall, Second Edition, 2001; or Thompson W.T., 1993, Theory of Vibration with Applications, Fourth Edition, Stanley-Thornes.
Dorf and Bishop “Modern Control Systems”, Chapt 3; Franklin, Powell and Emami-Naeini Feedback Control of Dynamic Systems”, Chapt 2.2, Chapt 7.1-7.2; Nise “Control Systems Engineering”, Chapt 3.
Online Learning
Significant links available to online resources available on MyUni. -
Learning & Teaching Activities
Learning & Teaching Modes
Lectures supported by computer-based tutorials and two laboratories.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
As per university recommendations, it is expected that students spend 48hrs/week during teaching periods, and that a 3 unit course has a minimum workload of 156 hours regardless of the length of the course. Additional time may need to be spent acquiring assumed knowledge, working on assessment during non-teaching periods, and preparing for and attending examinations.
Learning Activities Summary
Below is a breakdown of the scheduled learning activities for this course:
Vibrations- Free vibration of single degree-of-freedom systems (2 lectures)
- Forced vibrations (3 lectures)
- Damped vibrations (2 lectures)
- Vibration isolation (3 lectures)
- Multi-degree of freedom systems (4 lectures)
- Vibration of continuous systems (2 lectures)
- Determination of natural frequencies and mode shapes (5 lectures)
- Two laboratories: Balancing machinery and Vibrating beam
- Introduction to State Space Modelling (1 lecture)
- Construction of State Space Models (1 lecture)
- Modelling Multiple DOF Systems (1 lecture)
- Modelling Distributed Parameter Systems (1 lecture)
- Conversion between SS to TF and back again: Control canonical, observer canonical, Jordan form (1 lecture)
- Solution to state equations, poles, zeros and stability (1 lecture)
- Controllability and Observability (1 lecture)
- Feedback Control & Pole Placement (1 lecture)
- Optimal Control (LQR) (1 lecture) (1 lecture)
- Observers (Estimators) (1 lecture)
- Optimal Observers (Kalman-Bucy Filters, LQG) (1 lecture)
- Reduced Order Observers (1 lecture)
- Compensators (1 lecture)
- Reference Input & Command Tracking (1 lecture)
- Summary (1 lecture)
- Optional course content includes Linearisation of Non-linear Differential Equations & Lagrangian Mechanics
- Tutorials using MATLAB (10 tutorials)
- State Control of a MIMO Aerospace System and at least one other unstable MIMO plant (topic covered via assignments)
Specific Course Requirements
Nil. -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assignments and tutorials 20%, laboratories 10%, final exam 70%.
Assessment Rationale: Assignments are provided as part of the learning experience. Students are expected to enhance their knowledge and understanding of the subject matter through completing the assignments, so they are regarded as formative rather than summative.
Controls
It should be noted that all assignments for the control part of the course (only) are optional. If a student chooses to undertake an assignment, then this will contribute to their overall summative assessment, otherwise, the proportion of the mark will be added onto the final exam. The rationale behind this approach is it gives the students the responsibility to direct their learning, and in doing so hopefully lead to the situation in which the continuing assessment is seen as enhancing learning rather than simply providing summative assessment.
An assignment will be set approximately every three weeks. Solutions are provided on MyUni within 1 week of the submission date and relevant issues will be discussed in the lectures. Assignments are also used to help assess whether the required graduate attributes are being developed.
The computer tutorials are designed to provide instruction of Matlab and Simulink while simultaneously developing the understanding of the students’ control knowledge through simulation.
The examination is a summative assessment and is intended to assess the student’s knowledge and understanding of the course material and how it fits into the global engineering context.
Vibrations
‘Vibrations’ comprises a 50% component of the overall course. The Vibrations component is split into assignments (20%), laboratories (10%) and final examination (70%).
Assessment Related Requirements
Note that the laboratory experiments are compulsory and it is a requirement to pass the laboratory experiments to pass the course.
Assessment Detail
Controls
Four optional assignments spaced approximately 3 weeks apart, each worth 2.5% of overall assessment. 13 computer tutorials, each worth 0.25% of overall assessment. One optional discussion board entry worth 0.25%.
Vibrations
Four (assessed) assignments provide 20% of the overall Vibrations mark, with each assignment equally weighted. These assignments are set during the semester, each one released at least 2 weeks in advance of the submission deadline. The turnaround time for the return of marked assignments is weeks after the submission deadline. Late assignments are NOT accepted. Extensions are not granted, although exemptions to individual assignments may be granted on medical or compassionate grounds.
Two equally weighted laboratory classes through the semester provide 10% of the overall mark. Students must achieve 35% of the maximum possible Vibrations laboratory mark in order to be eligible to pass the course. Students who have successfully completed the labs in a previous attempt at the course are exempt.
The final, open book examination provides 70% of the overall Vibrations mark.
Variations in the assessment scheme are negotiable on medical and compassionate grounds.
Submission
All assignments and practical report must be submitted as a hard copy in the labelled box in the Mechanical Engineering submission area on Level 2 of Engineering South Building. Any assessment submitted as a hard copy must be accompanied by an assessment cover sheet available on the window ledge of room S116. Late assignments and reports will be penalised 10% per day. Extensions for assignments will only be given in exceptional circumstances and a case for this with supporting documentation can be made in writing after a lecture or via email to the lecturer. Hard copy assignments will be assessed and returned in 2 weeks of the due date. There will be no opportunities for re-submission of work of unacceptable standard. Due to the large size of the class feedback on assignments will be limited to in-class discussion resulting from questions from students.
All tutorials are submitted online using MyUni. Late tutorials and extensions for numbers 2 and 3 cannot be accepted as they are submitted electronically via MyUni which automatically prevents submission after the due time on the due date.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through Access Adelaide.
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- International Student Support
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
- YouX Student Care - Advocacy, confidential counselling, welfare support and advice
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Elder Conservatorium of Music Noise Management Plan
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.
The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.