CHEM 2510 - Chemistry IIA
North Terrace Campus - Semester 1 - 2017
-
General Course Information
Course Details
Course Code CHEM 2510 Course Chemistry IIA Coordinating Unit School of Physical Sciences Term Semester 1 Level Undergraduate Location/s North Terrace Campus Units 3 Contact Up to 7.5 hours per week Available for Study Abroad and Exchange Y Prerequisites CHEM 1100 & CHEM 1200 or CHEM 1101, CHEM 1201 & CHEM 1312 Incompatible CHEM 2512, CHEM 2514, CHEM 2516 Assessment Exam, practical work, assignments Course Staff
Course Coordinator: Associate Professor Tak Kee
A/Prof Tak W. Kee (tak.kee@adelaide.edu.au) for lectures and MyUni
Prof Christian Doonan (christian.doonan@adelaide.edu.au) for practicalsCourse Timetable
The full timetable of all activities for this course can be accessed from Course Planner.
-
Learning Outcomes
Course Learning Outcomes
1 explain chemical reactivity on the basis of structure and electronic arguments 2 predict likely chemical reactivity based on the chemical functionality, metal oxidation state or electronic nature of a molecule, be it organic or inorganic in nature 3 describe the underlying principles of chemical equilibrium, thermodynamics and kinetics, and be able to clearly communicate the link between these quantitative means of characterising chemical reactions 4 define chemical structure in terms of isomerism and stereoisomerism, and apply stereochemical considerations to aspects of organic and inorganic reactivity 5 provide a broad description of metal ligand interactions for metallic elements across the periodic table and have a firm understanding of how these elements interact with molecules containing the lighter main group elements of the p-block, with particular emphasis on so-called metal-ligand interactions 6 design, conduct, analyse and interpret results of an experiment, and effectively communicate these in written reports University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Deep discipline knowledge
- informed and infused by cutting edge research, scaffolded throughout their program of studies
- acquired from personal interaction with research active educators, from year 1
- accredited or validated against national or international standards (for relevant programs)
1-6 Critical thinking and problem solving
- steeped in research methods and rigor
- based on empirical evidence and the scientific approach to knowledge development
- demonstrated through appropriate and relevant assessment
2,5,6,7 Teamwork and communication skills
- developed from, with, and via the SGDE
- honed through assessment and practice throughout the program of studies
- encouraged and valued in all aspects of learning
7 Career and leadership readiness
- technology savvy
- professional and, where relevant, fully accredited
- forward thinking and well informed
- tested and validated by work based experiences
7 Intercultural and ethical competency
- adept at operating in other cultures
- comfortable with different nationalities and social contexts
- able to determine and contribute to desirable social outcomes
- demonstrated by study abroad or with an understanding of indigenous knowledges
7 Self-awareness and emotional intelligence
- a capacity for self-reflection and a willingness to engage in self-appraisal
- open to objective and constructive feedback from supervisors and peers
- able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
7 -
Learning Resources
Required Resources
Pushing Electrons - a guide for students of organic chemistry (4th Edition) Harcourt, 1998. ISBN: 0-03-020693-6
Recommended Resources
‘Organic Chemistry’ (Bruice, 7th Edition, Pearson Education, 2013)
‘Organic Chemistry’ (Clayden, Greeves, Warren and Wothers, Oxford University Press, 2012)
‘Inorganic Chemistry’ (Weller, 6th Edition, Oxford University Press, 2014)
‘Physical Chemistry’ (Atkins, 10th Edition, Oxford University Press, 2014)
‘Physical Chemistry’ (Tinoco, 5th Edition, Prentice Hall, 2013)
All the above are available for purchase from UniBooks or for loan from the Barr Smith library. All the above are available through UniBooks.Online Learning
MyUni: Teaching materials and course documentation will be posted on the MyUni website (http://myuni.adelaide.edu.au/).
Maths Resources
The Maths Learning Centre (MLC) helps all students learn and use the Maths they need at university. The MLC offers seminars, workshops, online, and print resources. It also runs a drop-in room in Hub Central from 10am to 4pm Monday to Friday during teaching weeks. For more information, visit http://www.adelaide.edu.au/mathslearning/
For chemistry-specific maths help, visit http://www.adelaide.edu.au/mathslearning/resources/chem -
Learning & Teaching Activities
Learning & Teaching Modes
- Lectures 36 x 50-minute sessions with three sessions per week
- Tutorials 12 x 50-minute sessions with one session per week
- Practicals 9 x 5-hour sessions (including the lab familiarisation session
Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
A student enrolled in a 3 unit course, such as this, should expect to spend, on average 12 hours per week on the studies required. This includes both the formal contact time required to the course (e.g., lectures and practicals), as well as non-contact time (e.g., reading and revision).
Learning Activities Summary
Coursework Content
- Synthetic Chemistry I - Chemistry of the Carbonyl Group (25%)
This section of the course will examine the reactivity of the carbonyl group, with the emphasis on aldehydes, ketones, imines, esters, amides and carboxylic acids. A mechanistic approach to the reactions of these compounds will be undertaken. Applications to the synthesis of molecules will be a feature, as will applications of this chemistry to the biological and material sciences.
- Metal-Ligand Chemistry (25%)
This section of the course will discuss the chemistry of metal-ligand complexes, with key topics including acids and bases, main group organometallic compounds, bonding in coordination chemistry, reactions, kinetics and mechanisms, homogeneous catalysis
- Thermodynamics and Kinetics (25%)
Thermodynamics - enthalpy (reprise); entropy; free energy; chemical potential; applications [reverse osmosis, dialysis, osmometry (polymer MW distribution)].
Kinetics - introduction to kinetics, first order reactions, second order reactions, applications
- Stereochemistry (25%)
This section of the course will extend the concepts of chirality encountered at Level I, then examine the three-dimensional shape of molecules. Conformation will be an important feature, with the emphasis on the effect that this can have on reactivity. Substitution and elimination reactions will be used to illustrate these concepts.
Practicals
There will be 8 sessions from Weeks 2 – 11. The 3-hour session in Week 1 is devoted to analytical techniques, data acquisition and data handling with a variety of software. The remaining sessions will be divided equally between synthetic chemistry, which will introduce the student to a variety of techniques to prepare chemicals in a safe manner, and measurement and analysis, which will introduce the student to techniques for studying and quantifying chemical processes.
Tutorials
The tutorials are formative in nature. These sessions will be held weekly and will provide the student with the opportunity to answer and discuss material from the lecture content. In addition, there are 4 summative tasks/assignments which will be used to assess the comprehension of the student on the material. The assignments have been designed to resemble what would be asked in the final examination.
-
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment task Type of assessment Percentage of total assessment for grading purposes # Hurdle
Yes or No #Outcomes being assessed/achieved Assignments Summative 10% No 1 – 6 Safety Assignment Summative 5% No 6 Practical Reports Formative & Summative 25% No 1 – 6 Exam Summative 60% Yes (45%) 1 – 6 Assessment Related Requirements
Attendance is compulsory at all scheduled chemistry practical sessions. The learning outcomes for this course are substantially dependent on laboratory experience and practice. Therefore, missing any practical class in a semester will result in a grade of FAIL being recorded for the course.
To pass this course students must:
Attain a minimum of 45% for the exam and attend all scheduled practical sessions.
Students who attain a final course grade of at least 45% but do not attain a minimum of 45% for the exam may be offered an Additional Academic Exam during the Replacement/Additional Assessment period, in line with the Modified Arrangements for Coursework Assessment Policy.
Assessment Detail
Assignments 10% - This assessment activity specifically covers lecture course content and is designed to encourage students to engage with the subject matter through semester (4 short-answer assignments). The assignments are supported and enhanced by students’ participation in tutorials.
Safety Assignment 5% - This short-answer assessment activity addresses the safety aspects in the chemical laboratories. There are 9 questions covering the topics of hazardous substance, hazard classifications, health hazard classification, material safety data sheets, EC/Hazard symbols, The Dangerous Goods Act, the Australian Code for the Transport of Dangerous Goods by Road or Rail (ADG Code), Dangerous Goods Classes , Packaging Groups (PG), exposure standard, LC50, LD50.
Practical Reports 25% - This assessment activity comprehensively addresses the practical aspects of chemistry and competent training in the techniques employed in chemical laboratories (8 short, hand-written practical reports submitted in class).
Final exam 60% - This assessment activity comprehensively addresses the learning outcomes.Submission
Submission of Assigned Work Coversheets must be completed and attached to all submitted work. Coversheets can be obtained from the School Office (room G33 Physics) or from MyUNI. Work should be submitted via the assignment drop box at the School Office.
Extensions for Assessment Tasks Extensions of deadlines for assessment tasks may be allowed for reasonable causes. Such situations would include compassionate and medical grounds of the severity that would justify the awarding of a supplementary examination. Evidence for the grounds must be provided when an extension is requested. Students are required to apply for an extension to the Course Coordinator before the assessment task is due. Extensions will not be provided on the grounds of poor prioritising of time. The assessment extension application form can be obtained from: http://www.sciences.adelaide.edu.au/current/
Late submission of assessments If an extension is not applied for, or not granted then a penalty for late submission will apply. A penalty of 10% of the value of the assignment for each calendar day that is late (i.e. weekends count as 2 days), up to a maximum of 50% of the available marks will be applied. This means that an assignment that is 5 days or more late without an approved extension can only receive a maximum of 50% of the mark.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through Access Adelaide.
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- International Student Support
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
- YouX Student Care - Advocacy, confidential counselling, welfare support and advice
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Elder Conservatorium of Music Noise Management Plan
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.
The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.