MECH ENG 7070 - Heat Transfer & Thermodynamics
North Terrace Campus - Semester 1 - 2020
-
General Course Information
Course Details
Course Code MECH ENG 7070 Course Heat Transfer & Thermodynamics Coordinating Unit School of Mechanical Engineering Term Semester 1 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Contact Up to 4 hours per week Available for Study Abroad and Exchange Y Assessment Laboratory class, assignments, final exam Course Staff
Course Coordinator: Professor Bassam Dally
Name Role Building/Room Email Mr Eyad Hassan Lecturer Engineering South Building S324g eyad.hassan@adelaide.edu.au A/Prof Eric Hu Lecturer Engineering South Building S105 eric.hu@adelaide.edu.au Course Timetable
The full timetable of all activities for this course can be accessed from Course Planner.
-
Learning Outcomes
Course Learning Outcomes
On successful completion of this course students will be able to:
1 Discuss the fundamental laws and principles of thermodynamics and heat transfer; 2 Apply these principles to real thermo-fluids systems; 3 Explain current practice in the area of thermo-fluids; and 4 Recognise environmental issues associated with energy conservation, efficiency, pollution control, etc.
The above course learning outcomes are aligned with the Engineers Australia Stage 1 Competency Standard for the Professional Engineer.
The course is designed to develop the following Elements of Competency: 1.1 1.2 1.3 1.4 1.5 1.6 2.1 2.2 2.3 3.1 3.2 3.3
University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Deep discipline knowledge
- informed and infused by cutting edge research, scaffolded throughout their program of studies
- acquired from personal interaction with research active educators, from year 1
- accredited or validated against national or international standards (for relevant programs)
1-4 Critical thinking and problem solving
- steeped in research methods and rigor
- based on empirical evidence and the scientific approach to knowledge development
- demonstrated through appropriate and relevant assessment
1-2 Teamwork and communication skills
- developed from, with, and via the SGDE
- honed through assessment and practice throughout the program of studies
- encouraged and valued in all aspects of learning
2,4 Career and leadership readiness
- technology savvy
- professional and, where relevant, fully accredited
- forward thinking and well informed
- tested and validated by work based experiences
1-4 Intercultural and ethical competency
- adept at operating in other cultures
- comfortable with different nationalities and social contexts
- able to determine and contribute to desirable social outcomes
- demonstrated by study abroad or with an understanding of indigenous knowledges
3-4 Self-awareness and emotional intelligence
- a capacity for self-reflection and a willingness to engage in self-appraisal
- open to objective and constructive feedback from supervisors and peers
- able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
2-4 -
Learning Resources
Required Resources
Course notes – these are essential and required for both Heat Transfer and Thermodynamics.
- Bergman, Lavine, Incropera and Dewitt., Fundamentals of Heat and Mass Transfer, 7th Edition, John Wiley & Sons, 2011.
- Moran and Shapiro, Fundamentals of Engineering Dynamics, 6th Edition, John Wiley & Sons, 2008
Recommended Resources
The Barr Smith Library has many textbooks, which are concerned with Heat Transfer and Thermodynamics. Students are encouraged to consult these books to enrich their knowledge in both topics. -
Learning & Teaching Activities
Learning & Teaching Modes
Lectures supported by problem-solving tutorials developing material covered in lectures.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
The required time commitment is 32 hours attendance at lectures, 16 hours tutorials, 6 hours practicals, 48 hours of revising course material and 50 hours completing assignments, reports and preparing for exam.Learning Activities Summary
Heat Transfer
Lecture 1: Introduction to Heat Transfer Lecture 2: Conduction – An Introduction Lecture 3: Conduction – Steady-State 1-D Lecture 4: Conduction – Steady-State, Multidimensional Lecture 5: Conduction – Transient/Unsteady Conduction Lecture 6: Conduction – Numerical Methods Lecture 7: Convection – An Introduction Lecture 8: Convection – External Convection Lecture 9: Convection – Internal Convection Lecture 10: Convection - Free Convection Lecture 11: Radiation – An Introduction Lecture 12: Radiation – Exchange between Surfaces Lecture 13: Heat Exchangers – An Introduction Lecture 14: Heat Exchangers – Design and Selection Lecture 15: Mass Transfer – Introduction Lecture 16: Mass Transfer - Discontinuous Interfaces Thermodynamics
Lecture 1-2: Thermodynamics I Revision and Overview Lecture 3-6: Vapour Power Systems Lecture 7-9: Gas Power Systems Lecture 10-12: Refrigeration & Heat Pumps Lecture 13-14: Ideal gas Mixtures & Psychrometrics Lecture 15-16: Reacting Mixtures and Combustion Specific Course Requirements
NONE -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Due to the current COVID-19 situation modified arrangements have been made to assessments to facilitate remote learning and teaching. Assessment details provided here reflect recent updates.
The course assessment is split 50/50 between Heat Transfer and Thermo.
Heat Transfer:
Assessment TaskThermodynamics 2 Assessment Task Weighting (%) Individual/ Group Formative/ Summative Due (week)* Hurdle criteria Learning outcomes Assignments (4) Long Assignments (3) 30 Individual Summative 4,5,7,9,10,12,13 1. 2. 3. 4. Lab Assessment (BBQ Experiment) Lab Assessment (Engine Performance) 10 Group/Individual Summative Week 2-12 Min 35% 1. 2. 3. 4. Online Quizes (5 Online quizzes (4) 10 Individual Summative fortnightly 1. 2. 3. 4. Final Exam Final Exam 50 Individual Summative End of semester 1. 2. 3. 4. Total 100
This assessment breakdown complies with the University's Assessment for Coursework Programs Policy.
This course has a hurdle requirement. Meeting the specified hurdle criteria is a requirement for passing the course.Assessment Related Requirements
NONEAssessment Detail
Four individual assignments on Heat Transfer, Four individual assignments on Thermodynamics and Three group assignments on Thermodynamics.Submission
All assignments will be through online submission (uploading a pdf). A proposed assignment and quiz schedule is included under Course Information. This schedule is subject to change.Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through Access Adelaide.
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- International Student Support
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
- YouX Student Care - Advocacy, confidential counselling, welfare support and advice
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Elder Conservatorium of Music Noise Management Plan
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.
The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.