CHEM ENG 7056 - Process Control and Instrumentation
North Terrace Campus - Semester 2 - 2024
-
General Course Information
Course Details
Course Code CHEM ENG 7056 Course Process Control and Instrumentation Coordinating Unit Chemical Engineering Term Semester 2 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Contact Up to 4 hours per week Available for Study Abroad and Exchange Y Incompatible CHEM ENG 3015, CHEM ENG 3031 Assumed Knowledge MATHS 2102, CHEM ENG 2010 Assessment Assignments, practicals, final examination Course Staff
Course Coordinator: Dr Nam Nghiep Tran
Course Timetable
The full timetable of all activities for this course can be accessed from Course Planner.
-
Learning Outcomes
Course Learning Outcomes
On successful completion of this course students will be able to:
1 Explain the basic principles & importance of process control in industrial process plants; 2 Specify the required instrumentation and final elements to ensure that well-tuned control is achieved; 3 Explain the use of block diagrams & the mathematical basis for the design of control systems; 4 Design and tune process (PID) controllers; 5 Use appropriate software tools (e.g. Matlab Control Toolbox & Simulink) for the modelling of plant dynamics and the design of well tuned control loops; 6 Explain the importance and application of good instrumentation for the efficient design of process control loops for process engineering plants; and 7 Draw a PID (Process & Instrumentation Diagram) & devise simple but effective plant wide control strategies using appropriate heuristics.
The above course learning outcomes are aligned with the Engineers Australia Entry to Practice Competency Standard for the Professional Engineer. The course develops the following EA Elements of Competency to levels of introductory (A), intermediate (B), advanced (C):
1.1 1.2 1.3 1.4 1.5 1.6 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 3.5 3.6 A C C — C A C C C — A — A B B B University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Attribute 1: Deep discipline knowledge and intellectual breadth
Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.
1-7 Attribute 2: Creative and critical thinking, and problem solving
Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.
1-7 -
Learning Resources
Recommended Resources
Textbook
Stephanopoulos, G 2005, Chemical Process Control; An Introduction to Theory & Practice, Prentice-Hall
Reference Book
Seborg, DE, Edgar TF & Mellichamp DA 2008, Process Dynamics & Control, 2nd Edition, John Wiley.
Online Learning
A range of online resources will be provided via MyUni. -
Learning & Teaching Activities
Learning & Teaching Modes
No information currently available.
Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
Activity Contact Hours Workload Hours Lectures 23 46 Tutorials 20 40 Quizzes 2 4 TOTAL 45 90 Learning Activities Summary
Topic 1: Model Development & Differential Equations
Solution of differential equations; use of Laplace transforms; development of dynamic models; Taylor series linearization of non-linear differential equations, inverse Laplace transforms; partial fraction expansion.
Topic 2: Block Diagrams
Closed-loop systems; block-diagram algebra.
Topic 3: Step Responses & Controller Algorithms
Step response of first & second-order systems, PID control – simple elements proportional, integral
& derivative mode; ideal & real-world controllers.
Topic 4: More Complex Transfer Functions
Higher-order systems; inverse response; dead time.
Topic 5: Stability
Introduction; poles & zeros; Argand diagrams; Routh array, root locus plots; degrees of freedom.
Topic 6: Controller Tuning & Model Fitting
Model development using plant step test data; Cohen Coon & Zeigler Nichols tuning methods.
Topic 7: Process Instrumentation
Sensors & transducers; data transmission; accuracy & repeatability, final elements in control loop;
pressure, temperature, level & flow rate measurement.
Topic 8: Final elements
Motor speed control; control valves – installed & inherent characteristics; PID (Process control &
Instrumentation Diagrams).
-
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment Task Weighting (%) Individual/ Group Formative/ Summative Due (week)* Hurdle criteria Learning outcomes Further information will be available prior to the start of the semester. Total 0
This assessment breakdown is registered as an exemption to the University's Assessment for Coursework Programs Policy. The exemption is related to the Procedures clause(s): 1. b. 3.
Assessment Detail
No information currently available.
Submission
No information currently available.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through Access Adelaide.
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- International Student Support
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
- YouX Student Care - Advocacy, confidential counselling, welfare support and advice
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Elder Conservatorium of Music Noise Management Plan
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.
The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.