PHYSICS 7551 - Radiotherapy Physics
North Terrace Campus - Semester 1 - 2024
-
General Course Information
Course Details
Course Code PHYSICS 7551 Course Radiotherapy Physics Coordinating Unit Physics Term Semester 1 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Contact Up to 2 hours per week Available for Study Abroad and Exchange Y Assumed Knowledge PHYSICS 7011 Biennial Course Course offered in even years Assessment Workshop preparation, assignments, exam Course Staff
Course Coordinator: Mr Jake Forster
Course Timetable
The full timetable of all activities for this course can be accessed from Course Planner.
-
Learning Outcomes
Course Learning Outcomes
On completion of this course, students should be able to:
1 Describe the radiobiological basis for radiotherapy; 2 Explain the principles of radiotherapy equipment; 3 Define the characteristics of clinical beams and their measurement; 4 Describe how dose produced by radiation sources can be quantified by measurement if ionization charge; 5 Understand the principles of dose calculation; 6 Understand the need for and principles of quality control of equipment in radiotherapy; 7 Describe the use of sealed and unsealed sources in radiotherapy; 8 Discuss a range of radiotherapy treatment techniques; 9 Discuss sources of uncertainties and their potential impact in radiotherapy. University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Attribute 1: Deep discipline knowledge and intellectual breadth
Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.
1-9 Attribute 2: Creative and critical thinking, and problem solving
Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.
2,6,9 Attribute 3: Teamwork and communication skills
Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.
1-4,7-9 Attribute 4: Professionalism and leadership readiness
Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.
3,6,8,9 Attribute 5: Intercultural and ethical competency
Graduates are responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.
1,6,9 Attribute 8: Self-awareness and emotional intelligence
Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.
1-9 -
Learning Resources
Required Resources
- H. E. Johns and J. R. Cunningham, The Physics of Radiology, 4th edition, Thomas, Illinois, USA, 1983.
- F. Khan, Radiotherapy Physics, 4th edition, Lippincott Williams and Wilkins, Baltimore, Maryland, USA 2010.
- E. B. Podgorsak, (Editor), Radiation Oncology Physics: A Handbook for Teachers and Students, IAEA (2005).
Recommended Resources
- D. Greene and P.C. Williams, Linear Accelerators for Radiation Therapy, 2nd edition , IOP (1997).
- P. Hoskin and C. Coyle (ed), Radiotherapy in Practice: Brachytherapy, Oxford University Press, (2005).
- F.M. Khan and R.A. Potish, Treatment Planning in Radiation Oncology, Williams and Wilkins, (1998).
- P. Metclafe, T. Kron and P. Hoban, The Physics of Radiotherapy X-Rays from Linear Accelerators, Medical Physics Publishing, Madison (1997).
- J. van Dyk, The Modern Technology of Radiation Oncology – A Compendium for Medical Physicists and Radiation Oncologists, Medical Physics Publishing, (2005).
- S. Webb, The Physics of Conformal Radiotherapy – Advances in Technology, IoP Publishing, (1997).
- S Webb, The Physics of Three-Dimensional Radiation Therapy, IoP Publishing, (2001).
- J. R. Williams & D. I. Thwaites Radiotherapy Physics in Practice 2nd edition, Oxford University Press, (2000)
Online Learning
- Students are required to access reading material from MyUni throughout the semester.
- External students are required to attend workshops via audio-visual internet link.
-
Learning & Teaching Activities
Learning & Teaching Modes
Students are provided with reading material prior to a weekly 2 hour workshop. Students are expected to have completed the reading material and answered questions related to the reading material before each workshop. Students are also encouraged to provide feedback on difficult or interesting material. External students are able to connect to the workshop via Blackboard Collaborate. Workshops are designed to be interactive, so that challenging concepts can be discussed in a group setting.
Several practical exercises will be planned through the course. External students working in a radiotherapy department will be expected to perform the practicals under the supervision of an onsite supervisor. The practicals are not assessable, but are designed to give students practical experience in radiotherapy departments.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
A student enrolled in a 3 unit course, such as this, should expect to spend, on average 12 hours per week on the studies required. This includes both the formal contact time required to the course (e.g., lectures and practicals), as well as non-contact time (e.g., reading and revision).Learning Activities Summary
The course content will include the following:
1. Introduction and Radiobiological Basis of Radiotherapy
2. Review of Radiation Physics for Radiotherapy
3. Dosimetric Quantities and Cavity Theory
4. Calculation of Absorbed Dose from Measurements of Charge Using Calibrated Ionization Chambers
5. Calibration Protocols
6. Radiotherapy Treatment Machines I: X-ray tubes and Co-60 units
7. Radiotherapy Treatment Machines II: Medical Electron Linear Accelerators
8. Linac Acceptance Testing, Commissioning and QA
9. Radiotherapy Treatment Simulation, Prescribing and Reporting
10. Simple Photon Treatment Planning Techniques
11. Computerised Photon Treatment Planning Systems and Commissioning
12. Photon Dose Calculation in Treatment Planning Systems
13. Treatment Plan Assessment and Biological Models in Radiotherapy Planning
14. Conventional Photon Treatment Techniques
15. Specialised Photon Treatment Techniques
16. Electron Planning and Treatment Techniques
17. Brachytherapy: Treatment Techniques and Devices
18. Brachytherapy: Source Calibration and Dose Calculation
19. Unsealed source therapy
20. Hadrontherapy
21. Image Guided Radiotherapy
22. Uncertainties in Radiotherapy and Treatment Delivery Verification
23. Clinical Trials in Radiotherapy
24. Review of Novel Radiotherapy Techniques -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment Task
Type of assessment
Percentage of total assessment
Hurdle?
Approx Timing of assessment
Objectives being assesses/achieved
Workshop preparation Formative and Summative 10% No Weeks 1-12 1 - 9 Assignments Formative and Summative 40% No Weeks 3,6,9,12 1 - 9 Final Examination Summative 50% No 1 - 9 Assessment Detail
Workshop preparation
Workshops will be held weekly. Before each workshop, students work through the relevant course material, prepare answers to the embedded questions, and identify aspects which require further explanation. Grading of the short answer preparation work is based on the thought process demonstrated by the student, rather than the correctness of answers.
Assignments
The standard assessment consists of 4 assignments. Assignments consist of a combination of between 5 and 10 short answer and numerical questions. Each assignment is of equal weighting.
Final exam
One 3 hour exam is used to assess the understanding of and ability to use the material. The exam consists of a combination of short answer and numerical questions.Submission
Extensions for Assessment Tasks
Extensions of deadlines for assessment tasks may be allowed for reasonable causes. Such situations would include compassionate and medical grounds of the severity that would justify the awarding of a replacement examination. Evidence for the grounds must be provided when an extension is requested. Students are required to apply for an extension to the Course Coordinator before the assessment task is due. Extensions will not be provided on the grounds of poor prioritising of time.
Penalty for Late Submission of Assessment Tasks
If an extension is not applied for, or not granted then a penalty for late submission will apply. A penalty of 10% of the value of the assignment for each calendar day that the assignment is late (i.e. weekends count as 2 days), up to a maximum of 50% of the available marks will be applied. This means that an assignment that is 5 days late or more without an approved extension can only receive a maximum of 50% of the marks available for that assignment.Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through Access Adelaide.
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- International Student Support
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
- YouX Student Care - Advocacy, confidential counselling, welfare support and advice
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Elder Conservatorium of Music Noise Management Plan
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.
The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.