DATA 7303AOL - Data Science Research Project A
Online - Online Teaching 5 - 2024
-
General Course Information
Course Details
Course Code DATA 7303AOL Course Data Science Research Project A Coordinating Unit Mathematical Sciences Term Online Teaching 5 Level Postgraduate Coursework Location/s Online Contact Up to 4 hours per week Available for Study Abroad and Exchange N Restrictions M. Data Sci (Applied) (OL) Assessment Assignments Course Staff
Course Coordinator: Nordiana Shah
Course Timetable
The full timetable of all activities for this course can be accessed from Course Planner.
-
Learning Outcomes
Course Learning Outcomes
Upon completion of this course, students will be able to:
1. Identify a current problem in data science in an area of specialisation (real-world industry context, involving large-scale data analysis).
2. Develop an appropriate research question, design and scopean applied research project with clear milestones.
3. Position your proposed research within the wider literature and industry context.
4. Select relevant research methodologies consistent with the principles, best-practice tools, techniques, and theories of data science.
5. Apply the requirements of research to be socially responsible and comply with professional and ethical standards.
6. Demonstrate an ability to learn, work and plan independently.University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Attribute 1: Deep discipline knowledge and intellectual breadth
Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.
1 Attribute 2: Creative and critical thinking, and problem solving
Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.
2,3 Attribute 3: Teamwork and communication skills
Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.
5 Attribute 4: Professionalism and leadership readiness
Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.
5,6 Attribute 5: Intercultural and ethical competency
Graduates are responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.
5 Attribute 7: Digital capabilities
Graduates are well prepared for living, learning and working in a digital society.
1,2,4,5 Attribute 8: Self-awareness and emotional intelligence
Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.
1 -
Learning Resources
Required Resources
Primary Textbook:
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
Aurelien Geron
O’REILLY
Secondary textbooks:
Deep Learning with Python
François CholletOnline Learning
This course is held online and all materials are available in MyUni -
Learning & Teaching Activities
Learning & Teaching Modes
This course is taught entirely online with meetings with supervisor.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
This course assumes a study and practice commitment of 20-25 hours per week.Learning Activities Summary
Students will use the provided Project Planner tool to manage their project: to set key project milestones, plan their weekly tasks and record their progress. During the student's learning, students will start to form their project proposal and dataset for analysis. -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
No information currently available.
Assessment Detail
No information currently available.
Submission
No information currently available.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
NOG (No Grade Associated) Grade Description CN Continuing Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through Access Adelaide.
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- International Student Support
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
- YouX Student Care - Advocacy, confidential counselling, welfare support and advice
Counselling for Fully Online Postgraduate Students
Fully online students can access counselling services here:
Phone: 1800 512 155 (24/7)
SMS service: 0439 449 876 (24/7)
Email: info@assureprograms.com.au
Go to the Study Smart Hub to learn more, or speak to your Student Success Advisor (SSA) on 1300 296 648 (Monday to Thursday, 8.30am–5pm ACST/ACDT, Friday, 8.30am–4.30pm ACST/ACDT)
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Elder Conservatorium of Music Noise Management Plan
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.
The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.