Useful series for probability proofs

By the Maths Learning Centre, University of Adelaide
Sum of natural numbers
$\sum_{n=1}^{N} n=\frac{1}{2} N(N+1)=\frac{1}{2} N^{2}+\frac{1}{2} N$
Sum of squares of natural numbers
$\sum_{n=1}^{N} n^{2}=\frac{1}{6} N(N+1)(2 N+1)=\frac{1}{3} N^{3}+\frac{1}{2} N^{2}+\frac{1}{6} N$
Finite geometric series
$\sum_{n=0}^{N} x^{n}=\frac{x^{N+1}-1}{x-1}=\frac{1-x^{N+1}}{1-x}$
Infinite geometric series
$\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad($ as long as $|x|<1)$
Maclaurin series for $\boldsymbol{e}^{\boldsymbol{x}}$
$\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}$

Binomial expansion

$\sum_{n=0}^{N}\binom{N}{n} x^{n} y^{N-n}=(x+y)^{N}$
Note: $\binom{N}{n}=\frac{N \cdot(N-1) \cdot \ldots \cdot(N-(n-2)) \cdot(N-(n-1))}{n \cdot(n-1) \cdot \ldots \cdot 2 \cdot 1}$ (n factors on both top and bottom)

$$
=\frac{N!}{n!(N-n)!}
$$

Infinite binomial series

$\sum_{n=0}^{\infty}\binom{N}{n} x^{n}=(1+x)^{N}$
Note: $\binom{N}{n}=\frac{N \cdot(N-1) \cdot \ldots \cdot(N-(n-2)) \cdot(N-(n-1))}{n \cdot(n-1) \cdot \ldots \cdot 2 \cdot 1}(\mathrm{n}$ factors on both top and bottom)
with $\binom{N}{0}=1$
Note: This applies when N is not a natural number too, but only if $|x|<1$.

